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Linear Regression

• Regression: given 𝑁 training examples 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑁
, learn 𝑓:  𝒙 ↦ 𝑦, where 𝑦 ∈ ℝ 

(numerical), 𝒙 𝑖 ∈ ℝ𝑑 (𝑑-dimensional feature vector)

• This mapping is usually not exact on training data
𝑦 = 𝑓 𝒙 + 𝜖 = ො𝑦 + 𝜖

where 𝜖 is the approximation error (also called noise)

• Linear Regression: if 𝑓 ⋅  is a linear function

𝑓 𝑥 = 𝑤0 + 𝑤1𝑥1 + ⋯ + 𝑤𝑑𝑥𝑑 = 𝑤0 𝑤1 … 𝑤𝑑

1
𝑥1

⋮
𝑥𝑑

= 𝒘𝑇 1
𝒙

• For convenience, we will view 𝒙 as the expanded feature vector 

𝒙 = 𝑥0, 𝑥1, … , 𝑥𝑑
𝑇, where 𝑥0 = 1

• Then we have 𝑦 = 𝒘𝑇𝒙 + 𝜖, and ො𝑦 = 𝑓 𝒙 = 𝒘𝑇𝒙
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Geometry of Linear Regression

• Examples when 𝑑 = 1 and 𝑑 = 2

• How to learn 𝒘 from training data 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑁
?

– Optimization: quantify the approximation error and minimize it
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Linear Regression with Squared Error

• On training data, we have 𝑦(𝑖) = ො𝑦(𝑖) + 𝜖(𝑖) = 𝒘𝑇𝒙 𝑖 + 𝜖(𝑖). 

In matrix form:

𝑦(1)

⋮
𝑦(𝑁)

=
𝒙 1 𝑇

⋮

𝒙 𝑁 𝑇

𝒘 +
𝜖(1)

⋮
𝜖(𝑁)

𝒚 = 𝑿𝒘 + 𝝐

• Define squared error loss:

𝐿 𝒘 =
1

𝑁
෍

𝑖=1

𝑁

𝑦 𝑖 − 𝒘𝑇𝒙 𝑖 2
=

1

𝑁
𝒚 − 𝑿𝒘 2

2

– Also called the Least Squares loss
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Minimizing Least Squares Loss

min
𝒘

1

𝑁
෍

𝑖=1

𝑁

𝑦 𝑖 − 𝒘𝑇𝒙 𝑖 2
= min

𝒘

1

𝑁
𝒚 − 𝑿𝒘 2

2

• Computer the gradient w.r.t. 𝒘:

𝛁𝒘𝐿 𝒘 =
2

𝑁
෍

𝑖=1

𝑁

−𝒙(𝑖) y 𝑖 − 𝒘𝑇𝒙 𝑖 =
2

𝑁
−𝑿𝑇𝒚 + 𝑿𝑇𝑿𝒘

• Gradient descent: update 𝒘 along the negative gradient 
direction

𝒘 ← 𝒘 − 𝜂𝛁𝒘𝐿 𝒘

with step size 𝜂 > 0, usually small

• Always converges, but may take a long time
– See Figures 5.4 and 5.5 in WBK
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Minimizing Least Squares with Pseudo-inverse

min
𝒘

1

𝑁
෍

𝑖=1

𝑁

𝑦 𝑖 − 𝒘𝑇𝒙 𝑖 2
= min

𝒘

1

𝑁
𝒚 − 𝑿𝒘 2

2

• This is a quadratic function of 𝒘
– Differentiable everywhere, gradient is 0 at a minimum

– Convex: if there is a minimum, then it is a global minimum

• Let gradient equal to zero, we get the normal equation:

𝛁𝒘𝐿 𝒘 =
2

𝑁
−𝑿𝑇𝒚 + 𝑿𝑇𝑿𝒘 = 0

𝑿𝑇𝑿𝒘 = 𝑿𝑇𝒚

• If 𝑿𝑇𝑿 is invertible (think about when?), then 𝒘 = 𝑿𝑇𝑿 −1𝑿𝑇𝒚
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Linear Regression with Absolute Error

• The least squares loss is commonly used, but 
is susceptible to overfitting outliers (Why?)

• Consider the absolute error loss (also called 
absolute deviations loss)

𝐿 𝒘 =
1

𝑁
෍

𝑖=1

𝑁

𝑦 𝑖 − 𝒘𝑇𝒙 𝑖 =
1

𝑁
𝒚 − 𝑿𝒘 1

– Not differentiable at 𝑦 𝑖 − 𝒘𝑇𝒙 𝑖 = 0, ∀𝑖

– Second derivative is always 0 if it exists

– Convex
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Least Squares → Ridge Regression

• Remember the normal equation for least 
squares

𝑿𝑇𝑿𝒘 = 𝑿𝑇𝒚

• If 𝑁 < 𝑑 + 1 or dimensions of 𝑿 are linearly 
dependent, then 𝑿𝑇𝑿 is singular, and there are 
infinitely many solutions for 𝒘. 
– Which one to choose?

• Ridge Regression

𝐿 𝒘 =
1

𝑁
𝒚 − 𝑿𝒘 2

2 + 𝜆 𝒘 2
2

– This is L2 regularization

– Preference inductive bias: prefers small 𝒘
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Ridge Regression

min
𝒘

1

𝑁
𝒚 − 𝑿𝒘 2

2 + 𝜆 𝒘 2
2 

• This is still a quadratic function of 𝒘 

• 𝜆 ≥ 0 controls the strength of regularization

• Computer gradient w.r.t. 𝒘 and let it equal zero:

𝛁𝒘𝐿 𝒘 =
2

𝑁
−𝑿𝑇𝒚 + 𝑿𝑇𝑿𝒘 + 2𝜆𝒘 = 0

• New normal equation:
𝑿𝑇𝑿 + 𝑁𝜆𝑰 𝒘 = 𝑿𝑇𝒚

• We can solve 𝒘:

𝒘 = 𝑿𝑇𝑿 + 𝑁𝜆𝑰 −𝟏𝑿𝑇𝒚
– The term 𝑁𝜆𝑰 makes 𝑿𝑇𝑿 less singular

• This L2 regularization idea is widely used in many machine learning models
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LASSO

• Least Absolute Shrinkage and Selection Operator (LASSO)

– Uses L1 regularization

min
𝒘

1

𝑁
𝒚 − 𝑿𝒘 2

2 + 𝜆 𝒘 1

• Still a convex function of 𝒘, but is not differentiable at 𝑤𝑘 = 0, ∀𝑘 ∈ 0, ⋯ , 𝑑

• Has no analytical solution as ridge regression does 

• Coordinate Descent algorithm

– Optimize only one parameter 𝑤𝑘 in each iteration

• Compared to ridge regression, LASSO results in a sparse vector 𝒘, where 
only a few elements are not zero.
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Why does L1 regularization creates sparsity? 
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Figure from 
https://en.wikipedia.org/wiki/Lp_space (figure from https://satishkumarmoparthi.medium.com/why-l1-norm-creates-sparsity-compared-with-l2-norm-3c6fa9c607f4)
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Ridge Regression vs. LASSO

min
𝒘

1

𝑁
𝒚 − 𝑿𝒘 2

2 + 𝜆 𝒘 2
2 

• Regularization, prefers small 𝒘

• Convex

• Has analytic solution

• Solve 𝒘 through normal equation

• Results in non-sparse 𝒘
– Many elements are small but non-zero

min
𝒘

1

𝑁
𝒚 − 𝑿𝒘 2

2 + 𝜆 𝒘 1

• Regularization, prefers small 𝒘

• Convex

• No analytic solution

• Solve 𝒘 through coordinate descent

• Results in sparse 𝒘
– Many elements are zero
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Nonlinear Regression

• In many cases the mapping between 𝒙 and 𝑦 is nonlinear

• One may try to derive nonlinear features 𝝓 𝒙 = 1, 𝜙1 𝒙 , ⋯ , 𝜙𝑝 𝒙
𝑇
, and 

then try linear regression from 𝝓 𝒙  to 𝑦
𝑦 = 𝒘𝑇𝝓 𝒙 + 𝜖

• This is nonlinear regression through linear regression and a nonlinear feature 
mapping
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Polynomial Regression

• Polynomial regression: when 𝜙j 𝒙  is a 

polynomial of 𝒙

– Example in 1-d:

𝝓 𝑥 = 1, 𝑥, ⋯ , 𝑥𝑝 𝑇

𝑦 = 𝒘𝑇𝝓 𝒙 + 𝜖
= 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2 + ⋯ + 𝑤𝑝𝑥𝑝 + 𝜖

• Then solve linear regression with squared error

min
𝒘

1

𝑁
𝒚 − 𝚽(𝑿)𝒘 2

2

• When 𝑝 is large, it often overfits

• Add regularization to alleviate it

– Ridge: min
𝒘

1

𝑁
𝒚 − 𝚽(𝑿)𝒘 2

2 + 𝜆 𝒘 2
2

– LASSO: min
𝒘

1

𝑁
𝒚 − 𝚽(𝑿)𝒘 2

2 + 𝜆 𝒘 1
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Ridge Regression with Nonlinear Features

min
𝒘

1

𝑁
𝒚 − 𝚽(𝑿)𝒘 2

2 + 𝜆 𝒘 2
2

original data 𝑿 =

𝒙 1 𝑇

𝒙 2 𝑇

⋮

𝒙 𝑁 𝑇
𝑁×(𝑑+1)

 → nonlinear features 𝚽 𝑿 =

𝝓 𝒙 1 𝑇

𝝓 𝒙 2 𝑇

⋮

𝝓 𝒙 𝑁 𝑇

𝑁×𝑝

• Solving 𝒘 through normal equation, we have

𝒘 = 𝚽 𝑿 𝑇𝚽 𝑿 + 𝑁𝜆𝑰𝑝×𝑝
−1

𝚽 𝑿 𝑇𝒚

• For test example 𝒙, use 𝒘 to predict its 𝑦

ො𝑦 = 𝒘𝑇𝝓 𝒙 = 𝒚𝑇𝚽 𝑿 𝚽 𝑿 𝑇𝚽 𝑿 + 𝑁𝜆𝑰𝑝×𝑝
−1

𝝓 𝒙

= 𝒚𝑇 𝚽 𝑿 𝚽 𝑿 𝑇 + 𝑁𝜆𝑰𝑁×𝑁
−1𝚽 𝑿 𝝓 𝒙

• We used the “push through” matrix identity:
𝑨 𝑨𝑇𝑨 + 𝑰 −1 = 𝑨𝑨𝑇 + 𝑰 −1𝑨
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Kernel Trick

ො𝑦 = 𝒚𝑇 𝚽 𝑿 𝚽 𝑿 𝑇 + 𝑁𝜆𝑰𝑁×𝑁
−1𝚽 𝑿 𝝓 𝒙

• The feature mapping 𝝓(⋅) enters the prediction only through inner products

• For example, in 1-d regression, let 𝝓 𝑥 =

1

3𝑥

3𝑥2

𝑥3

, then 𝝓 𝑥 𝑇𝝓 𝑥′ =

1 + 𝑥𝑥′ 3. To make a prediction on a test example, we only need to 
compute 1 + 𝑥𝑥′ 3 for different 𝑥, but not 𝝓 𝑥

• We could directly define these inner products instead of the nonlinear 
mapping 𝝓 ⋅  itself
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Kernel Trick

• Kernel: 𝜅 𝒙, 𝒙′ ∈ ℝ is a function that takes two samples and return a scalar. We assume

– Symmetric: 𝜅 𝒙, 𝒙′ = 𝜅 𝒙′, 𝒙

– Positive semidefinite: a corresponding mapping 𝝓 𝒙  always exists but is not unique! (Reproducing 
Kernel Hilbert Space, RKHS)

– Scaling (𝑎 ⋅ 𝜅 𝒙, 𝒙′  ∀𝑎 > 0), addition (𝜅1 𝒙, 𝒙′ + 𝜅2 𝒙, 𝒙′ ) and multiplication (𝜅1 𝒙, 𝒙′ 𝜅2 𝒙, 𝒙′ ) 
preserve positive semidefiniteness

• E.g., Linear kernel: 𝜅 𝒙, 𝒙′ = 𝒙𝑇𝒙′

– A corresponding mapping: 𝝓 𝒙 = 𝒙

• E.g., Polynomial kernel: 𝜅 𝒙, 𝒙′ = 𝑐 + 𝒙𝑇𝒙′ 𝑝−1

– A corresponding mapping: finite dimensional function 𝝓 𝒙  where each dimension is a polynomial 
of 𝒙 up to order 𝑝 − 1

• E.g., Gaussian Radial Basis Function (RBF) kernel: 𝜅 𝒙, 𝒙′ = exp −
𝒙−𝒙′

2

2

2𝑙2

– Corresponding mapping 𝝓 𝒙  has infinite dimensions

– “Local” nature: 𝜅 𝒙, 𝒙′ → 0 as 𝒙 − 𝒙′
2 → ∞
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Kernel Ridge Regression

• Objective: min
𝒘

1

𝑁
𝒚 − 𝚽(𝑿)𝒘 2

2 + 𝜆 𝒘 2
2

• Prediction: ො𝑦 = 𝒚𝑇 𝚽 𝑿 𝚽 𝑿 𝑇 + 𝑁𝜆𝑰𝑁×𝑁
−1𝚽 𝑿 𝝓 𝒙

• Define a kernel function 𝜅 𝒙, 𝒙′  

• On training set, we computer kernel between any pair of examples 

𝑲 𝑿, 𝑿 =
𝜅 𝒙 1 , 𝒙(1) ⋯ 𝜅 𝒙 1 , 𝒙(𝑁)

⋮ ⋯ ⋮
𝜅 𝒙 𝑁 , 𝒙(1) ⋯ 𝜅 𝒙 𝑁 , 𝒙(𝑁)

= 𝚽 𝑿 𝚽 𝑿 𝑇(Gram matrix)

• On test example 𝒙, make prediction as
ො𝑦 = 𝒚𝑇 𝑲 𝑿, 𝑿 + n𝜆𝑰 −1𝑲 𝑿, 𝒙 = 𝜶𝑇𝑲 𝑿, 𝒙
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Kernel Ridge Regression
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Representer Theorem

• By definition, dual variable
𝜶 = 𝑲 𝑿, 𝑿 + n𝜆𝑰 −1𝒚 = 𝚽 𝑿 𝚽 𝑿 𝑇 + n𝜆𝑰 −1𝒚

• For Kernel Ridge Regression, previously we have

𝒘 = 𝚽 𝑿 𝑇𝚽 𝑿 + 𝑁𝜆𝑰𝑝×𝑝
−1

𝚽 𝑿 𝑇𝒚

= 𝚽 𝑿 𝑇 𝚽 𝑿 𝚽 𝑿 𝑇 + 𝑁𝜆𝑰𝑁×𝑁
−1𝒚

= 𝚽 𝑿 𝑇𝜶

• This relation between 𝒘 ∈ ℝ𝑝 and 𝜶 ∈ ℝ𝑁, 𝒘 = 𝚽 𝑿 𝑇𝜶, is guaranteed by 

the representer theorem for (almost) any loss function with L2 regularization

• Thanks to this theorem, we can express a model using dual parameters 𝜶 
and a kernel 𝜅 𝒙, 𝒙′ : ො𝑦 = 𝜶𝑇𝑲 𝑿, 𝒙  , instead of the primal parameters 𝒘 
and a non-linear feature mapping 𝝓 𝒙 : ෝ𝒚 = 𝒘𝑇𝝓(𝒙)
– Note that the dimension of 𝝓(𝒙) is 𝑝, which can be very large or even infinite! 
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Support Vector Regression

• Let’s use the 𝜖-insensitive loss instead, 𝜖 > 0, to give some slack

min
𝒘

1

𝑁
෍

𝑖=1

𝑁

max{0, 𝑦 𝑖 − 𝒘𝑇𝝓 𝒙 𝑖 − 𝜖} + 𝜆 𝒘 2
2
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Dual Problem

• By the representer theorem, SVR predictions are also of the form
ො𝑦 = 𝜶𝑇𝑲 𝑿, 𝒙

• And dual variable 𝜶 is the solution of the dual problem:

min
𝜶

1

2
𝜶𝑇 𝑲 𝑿, 𝑿 𝜶 − 𝜶𝑻𝒚 + 𝜖 𝜶 1

subject to 𝛼𝑖 ≤
1

2𝑁𝜆
 

– No closed-form solution; needs to solve numerically

• 𝜶 is sparse (Note the L1 regularization term!)

– This means that the prediction ො𝑦 only uses some training examples, but not all!

– These training examples are called support vectors

– Note: 𝒘 is not sparse, as 𝒘 = 𝚽 𝑿 𝑇𝜶
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Support Vector Regression

• Support vectors are training 
examples whose loss is non-zero, 
i.e.,

𝑦(𝑖) − ො𝑦 𝑖 − 𝜖 > 0

• Larger 𝜖 → fewer support vectors

– Less computation during prediction

– Simpler model, smoother function, 
stronger regularization

• It is noted that all training 
examples are used in learning 
the model (i.e., choosing and 
weighing support vectors)
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Kernel Ridge Regression vs. Support Vector Regression

min
𝒘

1

𝑁
𝒚 − 𝚽(𝑿)𝒘 2

2 + 𝜆 𝒘 2
2

• L2 regularization on primal variable

• Kernel method

• Primal-dual relation: 𝒘 = 𝚽 𝑿 𝑇𝜶

• Solves dual variable 𝜶 instead of primal 
variable 𝒘

• Prediction: ො𝑦 = 𝜶𝑇𝑲 𝑿, 𝒙

• Solves 𝜶 analytically
𝜶 = 𝑲 𝑿, 𝑿 + n𝜆𝑰 −1𝒚

• 𝜶 is not sparse

min
𝒘

1

𝑁
෍

𝑖=1

𝑁

max{0, 𝑦 𝑖 − 𝒘𝑇𝝓 𝒙 𝑖 − 𝜖} + 𝜆 𝒘 2
2

• L2 regularization on primal variable

• Kernel method

• Primal-dual relation: 𝒘 = 𝚽 𝑿 𝑇𝜶

• Solves dual variable 𝜶 instead of primal 
variable 𝒘

• Prediction: ො𝑦 = 𝜶𝑇𝑲 𝑿, 𝒙

• Solves 𝜶 numerically

min
𝜶

1

2
𝜶𝑇 𝑲 𝑿, 𝑿 𝜶 − 𝜶𝑻𝒚 + 𝜖 𝜶 1

subject to 𝛼𝑖 ≤
1

2𝑁𝜆
 

• 𝜶 is sparse
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Summary

• Linear regression fits training data 𝒙 𝑖 , 𝑦 𝑖
𝑖=1

𝑁
 with a linear mapping 𝒘𝑇𝒙

– One may use different loss (squared error vs. absolute error) to measure the fitting error

• Regularization on the weights 𝒘 to prefer small weights

– L2 regularization: ridge regression → non-sparse weights 𝒘; Solving normal equation

– L1 regularization: LASSO → sparse weights 𝒘; Coordinate descent

• Nonlinear regression through nonlinear feature mapping and linear regression

• Realize nonlinear mapping through kernel trick implicitly

• Solving dual variable 𝜶 instead of primal variable 𝒘, thanks to representer theorem

• Kernel ridge regression: non-sparse 𝜶 ; computing 𝜶 directly

• Support vector regression: sparse 𝜶 , support vectors; solving 𝜶 numerically
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